首页> 外文OA文献 >Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques
【2h】

Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques

机译:使用物理学指导的数据挖掘技术来增强对极端气候的理解和预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Extreme events such as heat waves, cold spells, floods, droughts, tropical cyclones, and tornadoes have potentially devastating impacts on natural and engineered systems and human communities worldwide. Stakeholder decisions about critical infrastructures, natural resources, emergency preparedness and humanitarian aid typically need to be made at local to regional scales over seasonal to decadal planning horizons. However, credible climate change attribution and reliable projections at more localized and shorter time scales remain grand challenges. Long-standing gaps include inadequate understanding of processes such as cloud physics and ocean-land-atmosphere interactions, limitations of physics-based computer models, and the importance of intrinsic climate system variability at decadal horizons. Meanwhile, the growing size and complexity of climate data from model simulations and remote sensors increases opportunities to address these scientific gaps. This perspectives article explores the possibility that physically cognizant mining of massive climate data may lead to significant advances in generating credible predictive insights about climate extremes and in turn translating them to actionable metrics and information for adaptation and policy. Specifically, we propose that data mining techniques geared towards extremes can help tackle the grand challenges in the development of interpretable climate projections, predictability, and uncertainty assessments. To be successful, scalable methods will need to handle what has been called "big data" to tease out elusive but robust statistics of extremes and change from what is ultimately small data. Physically based relationships (where available) and conceptual understanding (where appropriate) are needed to guide methods development and interpretation of results. Such approaches may be especially relevant in situations where computer models may not be able to fully encapsulate current process understanding, yet the wealth of data may offer additional insights. Large-scale interdisciplinary team efforts, involving domain experts and individual researchers who span disciplines, will be necessary to address the challenge.
机译:诸如热浪,冷风,洪水,干旱,热带气旋和龙卷风等极端事件可能对全球的自然和工程系统以及人类社区造成破坏性影响。利益相关者对关键基础设施,自然资源,应急准备和人道主义援助的决策通常需要在季节到十年的规划范围内,在地方到区域范围内做出。但是,在更局限和更短的时间范围内,可靠的气候变化归因和可靠的预测仍然是巨大的挑战。长期存在的差距包括对诸如云物理学和海洋-陆地-大气相互作用之类的过程的了解不足,基于物理学的计算机模型的局限性以及年代际范围内固有的气候系统变异性的重要性。同时,来自模型仿真和遥感器的气候数据的规模和复杂性不断增长,为解决这些科学空白提供了更多机会。该观点文章探讨了以下可能性:以物理方式对大量气候数据进行挖掘可能会带来重大进展,从而产生有关气候极端事件的可靠预测性见解,并将其转化为可行的指标和信息以用于适应和政策。具体来说,我们建议针对极端情况的数据挖掘技术可以帮助解决可解释的气候预测,可预测性和不确定性评估方面的巨大挑战。为了获得成功,可伸缩方法将需要处理所谓的“大数据”,以挑出难以捉摸但可靠的极端统计数据,并从最终的小数据中进行改变。需要基于物理的关系(如果有)和概念上的理解(如果有)来指导方法的开发和结果的解释。在计算机模型可能无法完全封装当前对过程的理解,但是大量数据可能提供其他洞察力的情况下,此类方法可能特别相关。为应对这一挑战,将需要跨学科团队的大规模努力,涉及领域专家和跨学科的个人研究人员。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号